Gradient Like Behavior and High Gain Design of KWTA Neural Networks
نویسندگان
چکیده
It is considered the static and dynamic analysis of an analog electrical circuit having the structure of the Hopfield neural network, the KWTA (KWinners-Take-All) network. The mathematics of circuit design and operation is discussed via two basic tools: the Liapunov function ensuring the gradient like behavior and the rational choice of the weights that stands for network training to ensure order-preserving trajectories. Dynamics and behavior at equilibria are considered in their natural interaction, and some connections to the ideas in general dynamical systems of convolution type are suggested.
منابع مشابه
Parametric Sensitivity and Scalability of k-Winners-Take-All Networks with a Single State Variable and Infinity-Gain Activation Functions
In recent years, several k-winners-take-all (kWTA) neural networks were developed based on a quadratic programming formulation. In particular, a continuous-time kWTA network with a single state variable and its discrete-time counterpart were developed recently. These kWTA networks have proven properties of global convergence and simple architectures. Starting with problem formulations, this pap...
متن کاملAnalog Neural Networks as Decoders
Analog neural networks with feedback can be used to implement l(Winner-Take-All (KWTA) networks. In turn, KWTA networks can be used as decoders of a class of nonlinear error-correcting codes. By interconnecting such KWTA networks, we can construct decoders capable of decoding more powerful codes. We consider several families of interconnected KWTA networks, analyze their performance in terms of...
متن کاملConjugate gradient neural network in prediction of clay behavior and parameters sensitivities
The use of artificial neural networks has increased in many areas of engineering. In particular, this method has been applied to many geotechnical engineering problems and demonstrated some degree of success. A review of the literature reveals that it has been used successfully in modeling soil behavior, site characterization, earth retaining structures, settlement of structures, slope stabilit...
متن کاملHandwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns
The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...
متن کاملUsing Neural Networks and Genetic Algorithms for Modelling and Multi-objective Optimal Heat Exchange through a Tube Bank
In this study, by using a multi-objective optimization technique, the optimal design points of forced convective heat transfer in tubular arrangements were predicted upon the size, pitch and geometric configurations of a tube bank. In this way, the main concern of the study is focused on calculating the most favorable geometric characters which may gain to a maximum heat exchange as well as a m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009